Power-Aware Database Disk Storage System

Presented By:
Dr. Yicheng Tu
Department of Computer Science and Engineering
University of South Florida
Motivation

- Data centers consume considerable amount of energy (61 billion kWh, 45 billion US dollars in 2006).
- The major consumer of the data centers is the database disk storage component (25%-35%) called Disk Farm.
- The Green Computing Movement: Dynamic Power Management (DPM) techniques are commonly used for saving energy in disks storage systems.
Dynamic Power Management

• Key idea:
 ✓ Most frequently accessed data (hot data) stored on hot disks
 ✓ Transition other disks into sleep mode (cold)

• DPM algorithms determine dynamically when
 (1) the disk should be transitioned to cold state
 (2) certain data should be stored in particular hot disks
Hard Disks Specifications

<table>
<thead>
<tr>
<th>Mode</th>
<th>Rotation Speed (RPM)</th>
<th>Power (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active</td>
<td>12000</td>
<td>39</td>
</tr>
<tr>
<td>Stand By (sleep)</td>
<td>3600</td>
<td>4.15</td>
</tr>
</tbody>
</table>
Experimental Simulation Results

• F: hot data spread out factor, λ: workload intensity
• $F=1$: the worst performance vs. the most power saving
• $F=10$: the best performance vs. the worst power saving
• Mid-range F: reasonable power-performance trade-off

✓ Main Green Result: A 25-72% energy savings can be achieved with little performance degradation.