Evaluation of Viability for Natural Gas Fired Combined Heat and Power Projects in Florida

Florida Public Utilities Company
David Richardson
Energy Conservation Specialist

May 13, 2014
CHP Background / Project Introduction

• FPU electric retail rates are close to the highest in Florida
 – Base rates are among the lowest.
 – Fuel rates are the highest.

• FPU Wholesale Purchase Power Agreements (PPA)
 – Energy Prices range from $95 - $100 per MWH

• Existing Industrial Customers
 – Produce energy well below the wholesale PPA rates
 – Steam requirements constrained
 – Additional energy possible with steam constraint eliminated

• Customer Requests
 – Reduction in total rates possible with PPA reduction
 – Electric reliability improvements during storms
 – Produces positive impact on environment
Next Steps

• Assemble an experienced team of professionals to review the engineering, financial and environmental aspects
 – Determine Objectives
 – Gather Information
 – Identify Projects

• Review of all CHP Technology – One size does “NOT” fit all
 – Turbine – lower efficiency, higher electrical and thermal output
 – Reciprocating Machine - higher efficiency, lower electrical and thermal output

• Analyze the electrical and thermal loads and match with the appropriate CHP technology
 – Electrical Load
 – Steam and Waste Heat Requirements
 – Load Profiles
 – Offsite Sales
Next Steps

• Evaluate Electric Utility and Natural Gas Utility requirements
 – Interconnection Requirements – Voltage, Pressure, Costs
 – Natural Gas and Electric Cost Factors
 – Electricity Sales

• Investigate regulatory, environmental and permitting issues
 – Existing Contracts, Tariffs, State Electric Reliability Compliance Standards
 – FERC, FPSC, DEP, EPA, Local Governments

• Financial Modeling
 – Multi-year sensitivity analysis using appropriate ROI/ROE
 – Ownership Structure – private, utility, joint ownership
 – Consider design, construction, operating, and maintenance cost
 – Factor in tax, revenue stream, productivity, investment benefits
 – Intangible benefits related to reliability, security, environmental improvements

• Risk Mitigation Strategies
 – Fuel supply/costs, electricity costs, equipment costs
 – Construction delays, economy downturn
 – Construction overruns, unexpected maintenance
Conclusions

• Cover all your bases
 • People and Technology
 • Analyze load and utility requirements
 • Investigate regulatory, environmental, permitting issues

• Model, model and more modeling
 • Consider multiple project financial model scenarios
 • Initial and long term cost
 • Includes cost benefits
 • Quantify intangible benefits
 • Mitigate risks to the extent practical

• Win - Win – Win outcomes are possible
 • Owners Can Benefit
 • Investors Can Benefit
 • Even Utilities Can Benefit