Effective Doping of CdTe Towards High Efficiency Thin Film Solar Cell

M. I. Khan, V. Evani, P. Bane, V. Palekis, S. Collins and C. Ferekides

Presented By
Md Imran Khan

Florida Energy System Consortium Workshop
May 12, 2014
Project Objective

- CdTe highest reported efficiency 20.4%
- Objective:
 - Increase **doping concentration** while maintaining carrier lifetime

- CdTe is a defect semiconductor
- Stoichiometry of CdTe - critical to accommodate external dopants

Diagram:
- Cd atom
- Te atom
- V_{Cd}^{2+}
- V_{Te}^{2-}
Elemental Vapor Transport

- A process for CdTe deposition under Cd- or Te-rich conditions
- Separate zones for elemental Cd, Te and dopant

- Polycrystalline CdTe films with large grains
- Mostly (111) crystal orientation
Cd/Te Ratio Effect

- n-type or p-type films based on the Cd/Te ratio
Doping and Lifetime

- Extrinsic doping of CdTe with group V elements (Sb)
- Increase in doping concentration with Cd/Te ratio (Capacitance-Voltage measurements)

<table>
<thead>
<tr>
<th>Cd/Te</th>
<th>τ_2 (ns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.7</td>
<td>5.4</td>
</tr>
<tr>
<td>1.0</td>
<td>2.9</td>
</tr>
<tr>
<td>1.4</td>
<td>1.9</td>
</tr>
</tbody>
</table>

- 2-photon TRPL measurements - lifetimes up to 5 ns for CdCl$_2$ heat-treated samples