Cooling Channel Analysis to Enhance The Efficiency of Photovoltaic Panels

O. Abakporo, A. Rivera, J.C. Ordonez

FAMU-FSU College of Engineering
Department of Mechanical Engineering

Energy and Sustainability Center (ESC)
Center for Advanced Power Systems (CAPS)

Florida A&M University-Florida State University

FESC Workshop, Gainesville, FL
May 2014
Motivation

Efficiency Vs. Temperature

Goal:
- To study different cooling arrangements (geometries)
- Evaluate their impact on PV net power output

Passive cooling

See our team poster by
J.D. Osorio, A. Rivera and J.C. Ordonez
SOLARA SM 200 S

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brand</td>
<td>SOLARA</td>
</tr>
<tr>
<td>Model</td>
<td>SM 200 S</td>
</tr>
<tr>
<td>Origin</td>
<td>Germany</td>
</tr>
<tr>
<td>Performance</td>
<td>200 Wh/d</td>
</tr>
<tr>
<td>Power (P_{mpp})</td>
<td>50 Wp +/- 10%</td>
</tr>
<tr>
<td>System Voltage</td>
<td>12 V</td>
</tr>
<tr>
<td>Voltage (V_{mpp})</td>
<td>17.8 V</td>
</tr>
<tr>
<td>Open circuit voltage (V_{OC})</td>
<td>21.7 V</td>
</tr>
<tr>
<td>Current (I_{mpp})</td>
<td>2.8 A</td>
</tr>
<tr>
<td>Short circuit current (I_{OC})</td>
<td>2.98 A</td>
</tr>
<tr>
<td>Estimated Albedo Factor (a)</td>
<td>0.30</td>
</tr>
<tr>
<td>Area</td>
<td>0.449 m²</td>
</tr>
</tbody>
</table>
Convergence Analysis

Calculation

\[\dot{W}_{total} = \dot{W}_{pv} - \dot{W}_{fan} \]

\[\dot{W}_{pv} = \eta_{pv} I_{solar} A \]

\[\eta_{pv} = 0.147 - 0.0008 T_{panel} \]

\[\dot{W}_{fan} = \frac{\Delta P A_{channels} U}{\eta_{fan}} \]

\[\frac{\Delta P}{\frac{1}{2} \rho U^2} = 13.74 \left(x_+ \right)^{1/2} + \frac{1.25 + 64 x_+ - 13.74 \left(x_+ \right)^{1/2}}{1 + 0.00021 \left(x_+ \right)^{-2}} \]

\[x_+ = \frac{x/D}{Re_D} \]
Results

Future Work:
- Construct physical apparatus
- Apply to PEMFC
- Perform experimental validation

Acknowledgements:
Obie Abakporo acknowledges with gratitude the financial support from FAMU Title Three Minority Fellowship and the moral support from The Thermal Management Group, family, friends, and most importantly his faith.